年龄问题应用题及答案:解方程应用题(年龄问题) 时间:2023-02-25 12:08:07 由诗词网小编 分享 复制全文 下载本文 诗词网小编2023-02-25 12:08:07 复制全文 下载全文 目录1.解方程应用题(年龄问题)2.数学年龄问题应用题3.帮忙解决一下六年级提高题有哪些(行程,计算,牛吃草,变倍,和倍问题)最好是应用题,还要答案!4.年龄问题应用题5.求小学二年级下10道应用题【关于年龄问题】6.二年级年龄问题应用题怎么样解答7.求解初一数学应用题(年龄问题)1.解方程应用题(年龄问题)设x年后父亲的年龄是小明的三倍,根据题意得32+x=3(8+x)解得 x=42.数学年龄问题应用题72岁小明:3.帮忙解决一下六年级提高题有哪些(行程,计算,牛吃草,变倍,和倍问题)最好是应用题,还要答案!列一元一次方程解应用题的几种常见题型用其特点。1、银行储蓄问题。3、工程问题4、分配和配套问题5、求年龄问题6、数字问题7、等积问题 8、利润问题 9、调配问题。要培养分析问题和解决问题的能力,掌握列方程解应用题的一般方法,关键要弄清各类题型 中的基本数量关系及各类题型之间既相互独立,一、储蓄问题其数量关系是。利息=本金 利率 存期:本息=本金+利息;利息税=利息 利息税率,注意利率有日利率、月利率和年利率。年利率=月利率×12=日利率×365,例1. 小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后。扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元,2.43%x(1-20%)=48.60X=2500 例2.小丽有银行定期存款2500元:按年利率1.98%计算,存款到期本利合计2648.5元,如果扣去20%的利息税?那么小丽到期本利和多少元,2500(1+1.98%x)=2648.5X=3若扣去税:本利和为,2618.8例3.某人将a元以教育储蓄一年定期的形式存入银行:将本利和再以教育储蓄一年定期的形式存入银行,年利率还是b,1.李勇家以两种形式共储蓄了3000元:一年后全部取出可得利息43.92元.已知两种储蓄利率为2.25%和0.99%,问他家两种储蓄各多少元,(考虑利息税为20%) 设年利率为2.25%的存款为x元2.小王以两种形式分别储蓄了2000元和1000元?扣除利息所得税后可得得息43.92元,已知两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是百分之几,(公民应交利息所得税=利息金额×20%) 设2000元存款的年利率为 X=2.253.国家规定个人发表文章?出版图书获得稿费的原纳税计算方法是,(1)稿费不高于800元的不纳税:(2)稿费高于800元又不高于4000元的应交缴纳超过800元部分的那一部分稿费的14%的税;(3)稿费高于4000元的应缴纳全部稿费的11%的税.今知丁老师获得一笔稿费;(1)分析所纳税额在什么范围?故稿费应在800~4000元之间 设这笔稿费为x元。二、行程问题要掌握行程中的基本关系,各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系:②追及问题(同向而行)。这类问题的等量关系是,两人的路程差等于追及的路程或以追及时间为等量关系:同地反向而行的等量关系是两人走的路程和等于一圈的路程:同地同向而行的等量关系是两人所走的路程差等于一圈的路程;设小张乘公共汽车用去x小时,小张家到火车的路程为:(根据前后路程相等间接设未知数) 针对性训练:1.小华一家预定从家搭乘出租车赶往火车站,如果出租车以每小时50千米的速度行驶,就会迟到了24分钟;如果出租车以每小时75千米的高速行驶,可提前24分钟到达火车站,求小华家到火车站的路程. 设小华家到火车站的路程为x公里. 2.某队成员要从A地到相距18千米的B地去,先让甲组乘车,开到途中的C地,甲组人员下车步行,汽车回去接乙组,把乙组送到B地时,甲组也恰好同时到达B地,求AC两地间距离及两组人员各步行多少千米?设AC两地相距x公里方法2例5. 为庆祝校运会开幕,初一(2)班学生接受了制作小旗的任务.原计划一半同学参加制作,假设每人的制作效率相同,问共制作小旗多少面?计划用的时间=实际用的时间±时间差<若实际用的时间少,则加上时间差;则减去时间差>刚好坐满;如果单独租用60座客车,且余30个空座位.求该校参加春游的人数. 法1:间接设未知数设45座的车需要x辆法2:直接设未知数设参加春游的人为x人2.某工人按原计划每天生产20个零件,问此工人原计划生产零件多少个?设原计划生产零件y个,例6.一艘汽艇顺水行驶36千米和逆水行驶24千米的时间都是3小时,求汽艇在静水中的速度和水流速度。设汽艇在静水中的速度为x千米/顺水速度×顺水时间=顺水路程 逆水速度×逆水时间=逆水路程)水流速度为:设船在静水中的速度为x千米/时针对性训练:某汽车在一段坡路上往返行驶,上坡的速度为10千米/下坡的速度为20千米/求汽车的平均速度. 思想:所有的路程除以所有时间设坡长为a千米例7.甲乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙的速度是6米/甲的速度是乙的速度的2倍。本题甲的速度快,由于甲在乙前面8米处同时同向出发,因此本题的追及距离实际是(400-8)米。时的轿车准备超过一辆长12米,速度为100千米/时的卡车,问轿车从开始追上至超越卡车,需要花费多少秒的时间?利用相对速度2.已知一座铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过桥共用1分钟;而整列火车在桥上所用时间为40秒,求火车速度及车长. 设火车长为x米 速度为:秒3.一条环城公路长18千米,甲沿公路骑自行车,乙沿公路跑步,经过多少小时两人又相遇?量关系:工作总量=工作效率 工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,分析时可采用列表或画图来帮助理解题意,例8. 师徒两人检修一条煤气管道。师傅单独完成要10小时,徒弟单独完成要15小时. ①若两人合作,需多少小时完成,②若徒弟先做5小时?然后师傅再和他一起做,还要几小时才能完工,③若两人先合做5小时?再由徒弟一个人独做,还需要几小时能完工,①设需x小时完成:②还要合做y小时才能完工:1.开管注水入缸:注满以后拨出底塞,那么缸里的水10分钟可流尽.有一次开管注水入空缸,赶快塞上底塞又过了这么多时间才注满,问一共注了多少时间才把水缸注满,设x分钟可以把水缸注满 分钟2.两枝同样长的蜡烛?另一枝能燃烧4小时,设x小时后一枝蜡烛的长度是另一枝的2倍?设蜡烛的长度为单位,四.分配和配套问题此类问题没有什么基本的数量关系式”关键是要看不同的量之间是怎么分配和怎样配套的,求这批学生的人数和所租用的船只数。设有学生x人:本题容易将2和3的符号弄错,最简单的检查方法就是将方程解出来,将解出负数,1.现有甲乙两项工程:甲工程的工作量是乙工程的工作量的2倍,第二组有14人(假设人均工作效率相同),如果使甲的人数是乙的人数的2倍就可使得他们同时开工又同时完工设从第二组调x人去第一组2.在甲处劳动的有27人:在乙处劳动的有19人,现在另调20人去支援,问应调往甲乙两处各多少人,设往甲处分配x人?例10.某车间每天能生产甲种零件120个,或者乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套。要在30天内生产最多的成套产品,怎样安排生产甲、乙两种零件的天数:甲乙两种零件的比值为3:设安排生产甲种零件x天:例11.用白卡纸做包装盒。每张卡纸可制盒身16个或制盒底43个,一个盒身于两个盒底配成一套,现有100张卡纸,应用多少张制盒身,多少张制盒底,可以正好制成证书套包装盒,设应用x张制盒身:1.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根:1根轴杆与2个轴承为一套,应怎样调配人力,才能使每天生产的轴承和轴杆正好配套,设生产轴杆x人,(注意配套时的数量关系而建立等量关系)2.一张方桌由一个桌面4条桌腿组成.如果1立方米木料可以做桌面50个或桌300条?那么用多少立方米木料做桌面,多少立方米木料做桌腿,并计算出能配成多少套,设x立方做桌面 五.求年龄的问题这类问题中一般会牵涉到2个人在不同时间的年龄?哥哥的年龄+弟弟的年龄=总年龄哥哥今年的年龄- 弟弟今年的年龄=哥哥曾经的年龄- 弟弟曾经的年龄) 针对性训练:六、数字问题一个多位数:abc=a×100+ b×10+ c(如547=5×100+4×10+7) abc=a×100+ bc (如547=5×100+47) 要正确区分“这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。例14.一次小红把一个题目的答案的十位与个位数字写倒了,而正确答案的十位数字是个位数字的2倍,求正确答案。设正确答案中十位上数字为x,百位上的数字与其后的两位数之和为58,若把百位上的数字已到这个数的最后,求原来的三位数。设原数百位上数字为x,究竟是设原数还是新数;将个位上的数与百位上的数对调得到一个新的三位数,求原来这个三位数. 2.一个三位数的个位数字是7,若把个位数字移到首位,求这个三位数. 七、等积问题这里,等积指的是面积或体积相等。其基本数量关系式是:形变前的体积=形变后的体积必须掌握常见几何图形的面积、体积公式。例16.工厂锻造直径为80mm,高30mm的圆柱形毛坯,需要截取直径为4cm的圆钢多少长?设需要截取直径为4cm的圆钢x mm,(V柱体=πr2×h) 本题解题时有两处容易出错:二是不要把直径当半径来做。例17.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6cm,高10cm的圆柱形玻璃杯内,瓶内水面还有多高?①圆柱形瓶的体积为:圆柱形玻璃杯的体积为:两者体积比较:②设瓶内水面还有x cm高,1.一只直径为90毫米的圆柱体玻璃杯中装满了水,把杯中的水放入一个底面积为(131×131)毫米2,高为81毫米的长方体的铁盒中,当铁盒装满水时,玻璃杯中水的高度大约下降了多少毫米?(精确到0.1毫米) 2.现有一张长40cm、宽30cm的长方形铁皮,用它制作一个圆柱形铁桶侧面,另有足够大的铁皮做桶底,问怎样制作能使铁桶的容积最大?八、利润问题基本数量关系:利润=售价-进价;售价=定价×折扣;例18、某商品因换季打折出售,若按定价的90﹪出售,问商品定价。设商品定价x元,(利用本金不变列式)例19.某种商品按成本增加25﹪定价出售,后因库存积压需降价处理,如果每件商品仍想获得10﹪的利润,问降价时应按原定价的几折出售?设成本为a 元。服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,这样商店共获利157元.求甲乙两种服装的成本各是多少元?九、调配问题 从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量。使乙厂工人数是甲厂的2倍,乙厂有工人75名,现需要从二厂中抽调42人去支援别的工厂,抽调后甲厂人数是乙厂人数的二分之一,设未知数可直接设甲厂调出人数,间接设乙厂调出人数。乙车队有汽车65辆,要使甲车队汽车是乙车队汽车数的2倍,需从乙车队调几辆到甲车队?某服装厂加工车间有39人,每人工人每天可加工上衣5件或裤子8条,应怎样分配加工上衣和裤子的人数,十、溶液配制问题其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质=溶液×浓度( ),溶液=溶质+溶剂。溶质质量=溶液中所含溶质的质量。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。4.年龄问题应用题根据题意得32+x=3(8+x)解得 x=45.求小学二年级下10道应用题【关于年龄问题】母亲比儿子大27岁,母亲的年龄是儿子的4倍,儿子现在多少岁?爷爷比孙子大60岁,爷爷的年龄是孙子的16倍。孙子多少岁?妈妈今年36岁。6.二年级年龄问题应用题怎么样解答二年级的年龄问题多数是和倍问题,差差问题,只要抓住年龄差用不变这一规律。7.求解初一数学应用题(年龄问题)则儿子8年前年龄是x-8,父亲8年前4(x-8),现在父亲年龄为4*(8-x)+8则。 复制全文下载全文 复制全文下载全文