log的公式大全:关于log的常用公式 时间:2022-07-19 04:50:10 由作文陶老师原创 分享 复制全文 下载本文 作文陶老师原创2022-07-19 04:50:10 复制全文 下载全文 目录1.关于log的常用公式2.关于log的所有公式及推断3.关于log的公式4.对数函数的公式是什么,所有的,log,lg,In之类的5.对数函数log 的各种公式6.高中时关于log的一些公式7.对数公式的运算法则1.关于log的常用公式(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/log(A)M=log(b)M/2.关于log的所有公式及推断(1)loga(M.N)=longaM+longaN(2)longa(M/N)=longaM-longaN(3)logaM的n次方=nlogaM(4)logaM的n次开方=logaM的n次方分之一,nlogaM(5)loga的n次方M,nlogaM(6)logaa=1(7)alogaN=N(a>N>3.关于log的公式(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/log(A)M=log(b)M/0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 证明:设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N;n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M,4.对数函数的公式是什么,所有的,log,lg,In之类的(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)log(a^n)M^m=(m/n)log(a)M (7)对数恒等式:a^log(a)N=N; log(a)a^b=b5.对数函数log 的各种公式1、a^(log(a)(b))=b 2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M)推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。2、因为a^b=a^b令t=a^b所以a^b=t,b=log(a)(t)=log(a)(a^b)3、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:e^y=a^n则log(a^n)(b^m)=log(e^y)(e^x)=x/y=ln(a^n)得:6.高中时关于log的一些公式(1)log(a)(b)=log(a)(b) (a为底数)(2)lg(b)=log(10)(b) (10为底数)(3)ln(b)=log(e)(b) (e为底数)对数函数的运算性质:如果a〉0,且a不等于1,N>(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);7.对数公式的运算法则a≠1)3运算法则①loga(MN)=logaM+logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,e=2.718281828…为自然对数的底。若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(M)+log(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);4、log(a)(M^n)=nlog(a)(M)5、log(a^n)M=1/nlog(a)(M)推导:1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。2、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3、与(2)类似处理M/ 复制全文下载全文 复制全文下载全文